Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2890799.v1

ABSTRACT

Background: The aim of this work was to study the prevalence and distribution of Porcine astrovirus (PAstV), Porcine kobuvirus (PKoV), Porcine torovirus (PToV), Mammalian orthoreovirus (MRV) and Porcine mastadenovirus (PAdV) as well as their association with widely recognized virus that cause diarrhoea in swine such as coronavirus (CoVs) and rotavirus (RVs) in diarrhoea outbreaks from Spanish swine farms. Furthermore, a selection of the viral strains was genetically characterized. Results: PAstV, PKoV, PToV, MRV and PAdV were frequently detected. Particularly, PAstV and PKoV were detected in almost 50% and 30% of the investigated farms, respectively, with an age-dependent distribution; PAstV was mainly detected in postweaning and fattening pigs, while PKoV was more frequent in sucking piglets. Viral co-infections were detected in almost half of the outbreaks, combining CoVs, RVs and the viruses studied, with a maximum of 5 different viral species reported in three investigated farms. Using a next generation sequencing approach, we obtained a total of 24 ARN viral genomes (>90% genome sequence), characterizing for first time the full genome of circulating strains of PAstV2, PAstV4, PAstV5 and PToV on Spanish farms. Phylogenetic analyses showed that PAstV, PKoV and PToV from Spanish swine farms clustered together with isolates of the same viral species from neighboring pig producing countries. Conclusions: Although further studies to evaluate the role of these enteric viruses in diarrhoea outbreaks are required, their wide distribution and frequent association in co-infections cannot be disregard. Hence, their inclusion into routine diagnostic panels for diarrhoea in swine should be considered.


Subject(s)
Rotavirus Infections , Coinfection , Diarrhea
2.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165296578.86628515.v1

ABSTRACT

Global emergence and re-emergence of Porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus which causes a highly contagious enteric disease, have led to several studies addressing its variability. The aim of this study was to characterize the infection of weaned pigs with Swine enteric coronavirus (SeCoV) -a chimeric virus most likely originated from a recombination event between PEDV and Transmissible gastroenteritis virus, or its mutant Porcine respiratory coronavirus- , and two PEDV G1b variants, including a recently described recombinant PEDV-SeCoV (rPEDV-SeCoV), as well as to determine the degree of cross-protection achieved against the rPEDV-SeCoV. For this purpose, forty-eight 4-week-old weaned pigs were randomly allocated into four groups of 12 animals; piglets in groups B, C and D were orally inoculated with a PEDV variant (B and D) or SeCoV (C), while piglets in group A were mock inoculated and maintained as controls. At day 20 post-infection all groups were exposed to rPEDV-SeCoV; thus, group D was subjected to a homologous re-challenge, groups B and C to a heterologous re-challenge (PEDV/rPEDV-SeCoV and SeCoV/rPEDV-SeCoV, respectively) and group A was primary challenged (-/rPEDV-SeCoV). Clinical signs, viral shedding, microscopic lesions and specific humoral and cellular immune responses (IgG, IgA, neutralizing antibodies and IgA and IFN-γ-secreting cells) were monitored. After primo-infection all three viral strains induced an undistinguishable mild-to-moderate clinical disease with diarrhea as the main sign and villus shortening lesions in the small intestine. In homologous re-challenged pigs, no clinical signs or lesions were observed, and viral shedding was only detected in a single animal. This fact may be explained by the significant high level of rPEDV-SeCoV-specific neutralizing antibodies found in these pigs before the challenge. In contrast, prior exposition to a different PEDV G1b variant or SeCoV only provided partial cross-protection, allowing rPEDV-SeCoV replication and shedding in feces.


Subject(s)
Coronavirus Infections , Porcine Reproductive and Respiratory Syndrome , Gastroenteritis , Diarrhea
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.16.099499

ABSTRACT

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic offers a unique opportunity to study the introduction and evolution of a pathogen into a completely naive human population. We identified and analysed the amino acid mutations that gained prominence worldwide in the early months of the pandemic. Eight mutations have been identified along the viral genome, mostly located in conserved segments of the structural proteins and showing low variability among coronavirus, which indicated that they might have a functional impact. At the moment of writing this paper, these mutations present a varied success in the SARS-CoV-2 virus population; ranging from a change in the spike protein that becomes absolutely prevalent, two mutations in the nucleocapsid protein showing frequencies around 25%, to a mutation in the matrix protein that nearly fades out after reaching a frequency of 20%.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL